contract of the setting and this set of the let 2018

MATHEMATICS

(Major)

Paper: 4.1

(Real Analysis)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: 1×10=10
 - (a) Find the values of x and y, if $S = \{1 - \frac{(-1)^n}{n} : n \in N\}, \text{ inf } S = x \text{ and}$

 $\sup S = u$

Is the set Q of all rational numbers (b) closed? Give justification.

- (c) Define the limit inferior of the sequence $\{a_n\}$ of real numbers.
- (d) If $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$, then the sequence $\{a_n b_n\}$ is always convergent.

(Write true or false)

(e) If the series

$$u_1 - u_2 + u_3 - u_4 + \cdots$$
, $(u_n > 0, \forall n)$

is such that $u_{n+1} \le u_n$, $\forall n$ and $\lim_{n \to \infty} u_n = 0$, then the series

- (i) converges
- (ii) diverges
- (iii) oscillates

(Choose the correct answer)

(f) The series

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$$

is not convergent. Give reason.

(g) Evaluate:

$$\lim_{x \to 0+} \frac{\sin x}{\sqrt{x}}$$

(h) A function f is defined on R by

$$f(x) = \begin{cases} -x^2, & \text{if } x \le 0\\ 5x - 4, & \text{if } 0 < x \le 1\\ 4x^2 - 3x, & \text{if } 1 < x < 2\\ 3x + 4, & \text{if } x \ge 2 \end{cases}$$

Discuss the kind of discontinuity at x = 0, if any.

- (i) Find the value of $c \in]a, b[$ for Cauchy's mean value theorem for the functions $f(x) = e^x$ and $g(x) = e^{-x}$ in [a, b].
- (j) State the intermediate value theorem for derivatives.
- 2. Answer the following questions: 2×5=10
 - (a) If $a \in R$ such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then prove that a = 0.
 - (b) Test the convergence of $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots$
 - (c) Show that the function $f(x) = \frac{1}{x}$ is not uniformly continuous on [0, 1].

- (d) Examine the function $(x-3)^5(x+1)^4$ for the extreme value x=3.
- (e) Show that the function $f(x) = x^2$ is derivable on [0, 1].
- 3. Answer any four parts:

5×4=20

5

5

- (a) Prove that the arbitrary intersection of closed sets is closed.
- (b) If $\{a_n\}$ is any sequence of real numbers, then prove that

$$\inf a_n \leq \underline{\lim} a_n \leq \overline{\lim} a_n \leq \sup a_n$$

(c) If $\sum u_n$ is a positive term series, such that

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=A$$

then prove that the series converges if A < 1.

(d) Test for convergence of the series

$$\sum \frac{1^2 \cdot 3^2 \cdots (2n-1)^2}{2^2 \cdot 4^2 \cdots (2n)^2} x^{n-1}, x > 0$$

(e)	Prove that if a function f is continuous on a closed interval $[a, b]$, then it attains its bounds at least once in $[a, b]$.
(f)	Use Taylor's theorem to show that
	$\cos x \ge 1 - \frac{x^2}{2}$
	for all real $x \ge 0$.
	a u bright in thy habitety report (30)
Ans	wer either (a) and (b) or (c) and (d): $5\times2=10$
(a)	If S_1 , S_2 are subsets of R , then show that $(S_1 \cap S_2)' \subseteq S_1' \cap S_2'$. Give an example to show that the equality between $(S_1 \cap S_2)'$ and $S_1' \cap S_2'$ may not hold, where S_i' denote derived set of S_i for $i=1,2$.
(b)	State and prove Sandwich theorem for sequence of real numbers.
(c)	If $\{a_n\}$ is a sequence, such that $\lim \frac{a_{n+1}}{a_n} = l > 1$, then prove that $\lim a_n = \infty$.
(d)	If the monotonic increasing sequence $\{S_n\}$ is bounded, then prove that it is
	convergent. 5

- 5. Answer either (a) and (b) or (c) and (d): $5\times2=10$
 - (a) When is a series $\sum u_n$ said to be absolutely convergent? Show that for any fixed value of x, the series

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$

is convergent.

1+4=5

(b) State Gauss's test for convergence of a series. Applying this test, examine the convergence of the series

$$1 + \frac{\alpha}{\beta} + \frac{\alpha(\alpha+1)}{\beta(\beta+1)} + \frac{\alpha(\alpha+1)(\alpha+2)}{\beta(\beta+1)(\beta+2)} + \cdots \infty$$

where $\alpha > 0$ and $\beta > 0$.

1+4=5

(c) Using comparison test (first type), show that

$$1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

is convergent.

5

(d) Rearranging the terms of

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots \infty$$

show that the series can be made convergent to different limits. State a condition under which a series converges to the same limit after rearrangement.

4+1=5

6. Answer any two parts:

5×2=10

- (a) When is a function f(x) said to have a discontinuity of the first kind at x = c? If [x] denotes the largest integer ≤ x, then discuss the continuity at x = 3 of f(x) = x [x], ∀x ≥ 0.
 Is the function continuous at the integral value x = 2?
- (b) Prove the following:

21/2+21/2=5

- (i) $\lim_{x\to c} f(x) = B$ implies $\lim_{x\to c} |f(x)| = |B|$
- (ii) $\lim_{x\to 0} x \sin \frac{1}{x} = 0$
- (c) Prove that a continuous and strictly increasing function f in [a, b] is invertible and the inverse function is continuous in [f(a), f(b)].

5

(d) Suppose that $f: R \to R$ is differentiable at c and that f(c) = 0. Show that g(x) = |f(x)| is differentiable at c if and only if f'(c) = 0.

5

7. Answer any two parts: 5×2=10

A twice differentiable function f is such (a) that f(a) = f(b) = 0 and f(c) > 0, for a < c < b. Prove that there is at least one value λ between a and b for which $f''(\lambda) < 0$.

5

Prove that between any two real roots of (b) $e^x \sin x = 1$, there is at least one real root of $e^x \cos x + 1 = 0$.

5

(c) Show that $\sin x(1 + \cos x)$ is maximum at $x = \pi / 3$.

5

(d) Find Maclaurin's power series expansion for the function

 $f(x) = \log(1+x)$, for $-1 < x \le 1$

an malment as it is to a single

scale with a second of more many all with worth we take their best force or from he is the official top of his care (27), or him