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Abstract: It is well known that a positive integer n is said to be near perfect number, if σ(n) = 2n+d where d is a proper 

divisor of n and function σ(n) is the sum of all positive divisors of n In this paper, we discuss some results concerning with 

near perfect numbers from known near perfect numbers. 
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1. Introduction 

A positive integer � is called perfect number if the sum of 

all proper divisors of � is equal to �. Proper divisors of � are 

positive divisors of � other than � itself. The smallest perfect 

number is 6 since 6 = 1 + 2 + 3. First four perfect numbers 

are: 6, 28, 496, 8128; which are known from ancient time. 

Well known divisor function �	�
 is the sum of all positive 

divisors of  � . Divisor function �	�
  is a multiplicative 

function i.e.,  �	�
  satisfies the functional condition 

�	��
 = �	�
�	�
  if g.c.d 	�, �
 = 1.  For any perfect 

number  �, �	�
 = 2�. All known perfect numbers are even. 

Euler [9] proved that all known perfect numbers are of the 

form � = 2��� 
P

M , where both  �  and 
P

M = 2� − 1  are 

primes. The primes of the form = 2� − 1  are called 

Mersenne primes. Up to now (March, 2017), only 49 

Mersenne prime numbers are known which means there are 

only 49 even perfect numbers that are discovered [14]. Multi-

perfect numbers are natural extension of classical perfect 

numbers. A positive integer � is called � −perfect number [3, 

4](multi perfect of abundancy  �  or generalized perfect 

number) if �	�
 = ��, where � > 2. All known � − perfect 

numbers are even. There are only finite number of multi-

perfect numbers are discovered. No single example for an 

odd perfect number and odd multi perfect number has been 

found nor has a proof for their non-existence been 

established, although many people have been working on this 

problem for centuries.  

In recent time, other possible generalized perfect numbers 

are hyper perfect numbers [13], near perfect numbers [10], 

near and deficient hyperperfect numbers [5], near � −perfect 

numbers. In 2012, P. Pollack and V. Shevelev [10] introduced 

the notion of near perfect numbers. It is well known that a 

positive integer � is called near perfect number, if � is the 

sum of all of its proper divisors, except for one of them, 

which is termed as redundant divisor. For example, proper 

divisors of 12 are 1, 2, 3, 4 and 6. We can write 12 = 1 +
2 + 3 + 6 , which shows that 12 is a near perfect with 

redundant divisor 4. Moreover, using the definition of divisor 

function �	�
 one can say: a positive integer � is near perfect 

number with redundant divisor d if and only if d  is a proper 

divisor of � and  �	�
 = 2� + �. Some near perfect numbers 

are associated with classical perfect numbers. If � = 2��� 

P
M  is an even perfect number, then � = 2�, � = 2�� and 

� = 	2� − 1
�  are near perfect numbers with two distinct 

prime factors. There are infinitely many near perfect numbers 

other than above shapes. In [10], P. Pollack and V. Shevelev 

have also defined � −near perfect number. A positive integer 

� is called � near perfect number [10], if � is the sum of all 

of its proper divisors, except � numbers of proper divisors. If 

�  is a �  near perfect number with redundant divisors 

1 2 3
, , ,....,

k
d d d d  then we can write 

�	�
 = 2�
1 2 3

.....
k

d d d d+ + + + + . 

Near perfect numbers are 1 near perfect number. 

From the definition of � − perfect number, it is clear that 

there are infinite numbers of � − near perfect number.  

Another special kind of prime number is Fermat Prime. 

Odd Prime number of the form 
n

F  = 2 1m +  is called Fermat 

prime, where � must be some power of 2 [2]. There are only 

five known Fermat prime numbers: 
0

3F = , 
1

5F = , 
2

17F = , 
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3
F  = 257  and 

4
65537F = . 

2. Main Results 

We have obtained the following results from known near 

perfect numbers. 

Proposition 2.1. For any integer � ≥ 1, there is no near 

perfect number of the form � = 2�. 

Proof. If � = 2� is a near perfect number with redundant 

divisor 2� , where 0 < � < � , then from definition of near 

perfect numbers �	�
 = 2��� + 2�.  But the equation 

2��� − 1 = 2��� + 2�  strictly implies that 2� + 1 = 0, 
which is a contradiction. Hence there is no near perfect 

number of the form � = 2�, where � ≥ 1. 
Proposition 2.2. For any integer � ≥ 1, there is no near 

perfect number of the form � = 2� � with redundant divisor 

�, where � is an odd prime. 

Proof. Suppose � = 2� �  is a near perfect number with 

redundant divisor �,  then from definition of near perfect 

numbers �	�
 − 2� = �. Therefore the equation 

	2��� − 1
	� + 1
 − 2���� = � , strictly implies that 

2��� − 1 = 2�. But the expression 2��� − 1 is always odd 

for any integer � ≥ 1 . Therefore there is no near perfect 

number of the form � = 2� � with redundant divisor �. 

Proposition 2.3. If � is an odd prime, then any number of 

the form � = 2�� is a near perfect number if and only if 

� = 3. 

Proposition 2.4. If � is an odd prime, then any number of the 

form � = 2� �� is a near perfect number if and only if � = 7. 

Proposition 2.5. Let 
m

F = 2 1m +  is a Fermat prime. If 

� = 2�
m

F  is a near perfect number, then � = 12 or � = 20. 

Proof. If � = 2�
m

F  is a near perfect number with 

redundant divisor  , then we have �	�
 = 2!
m

F  +   and 

therefore 7( 1) 8
m m

F F+ − =  . This equation strictly implies 

that 7
m

F R− = . Since   is a positive proper divisor of � and 

m
F  is a Fermat prime, so the last equation strictly implies 

that 
m

F = 3 and 
m

F = 5. 

Proposition 2.6. Let 
m

F ≥ 17 is a Fermat prime and � is an 

odd prime relatively prime to 
m

F . If � = 2!�
m

F  is a near 

perfect number with redundant divisor 2!
m

F , then the prime 

� must be of the form � = 
7 15

15

m

m

F

F

+
−

. 

Proof. If � = 2!�
m

F  is a near perfect number with 

redundant divisor 2!
m

F , then �	�
 − 2� = 8
m

F . This 

equation implies that 15 ( 1)
m

F + 	� + 1
 − 16 �
m

F = 8 
m

F . 

Solving this equation one can obtain the form of �.  
Example 2.1. 

 Suppose � = 2!. 17. �  is a near perfect number with 

redundant divisor 2!. 17. 

Here 
m

F = 17, then � = 7 15

15

m

m

F

F

+
−

= 6 , i.e., � =

2!. 17. 67 is a near perfect number. 

Proposition 2.7. Let 
m

F  ≥ 17 is a Fermat prime and � is 

an odd prime relatively prime to 
m

F . If � = 2!�
m

F  is a near 

perfect number with redundant divisor 2!, then the prime � 

must be of the form � = 15 7

15

m

m

F

F

+
−

. 

Proof. Since � = 2!�
m

F  is a near perfect number with 

redundant divisor 2!, so we can write �	�
 − 2� = 8. This 

equation implies that 15 ( 1)
m

F + 	� + 1
 − 16 �
m

F = 8. 
Solving this equation one can get the form of �. 

Example 2.2. n = 17816 = 2!. 17.131 is a near perfect 

number with redundant divisor 2!. 

Here 
m

F  = 17 and therefore � = 15 7

15

m

m

F

F

+
−

= 131. 

Proposition 2.8. There is no near perfect number of the 

form � =
1 2

p p , where 
1

p  and 
2

p  are distinct odd primes. 

Proof. Suppose � =
1 2

p p  is a near perfect number with 

redundant divisor  , then either  = 
1

p  or  =
2

p . If = 
1

p , 

then �	�
 =
1 2

2 p p +  . Therefore 
1 2

( 1)( 1)p p+ + = 

1 2 1
2 p p p+ , which implies that 

2 1
( 1)p p − = 1 . This equation 

has solution only for 
1

p = 2  and
2

p = 1, which contradict 

the facts that 
1

p  and 
2

p  are odd primes. 

Proposition 2.9. There is no near perfect number of the 

form � =
1 2

2 p p , where 
1

p  and 
2

p  are distinct odd primes. 

Proof. Suppose � =
1 2

2 p p  is a near perfect number with 

redundant divisor  , then �	�
 =
1 2

4 p p  + , where possible 

values of   are  = 
1

p  or 
2

p  or 2
1

p  or 2
2

p
 
or

1 2
p p . 

Case I. Suppose  =
1

p , then �	�
 =
1 2

4 p p +
1

p , which 

gives 
2

3( 1)p +  =
1 2
( 2)p p − . From the last equation we 

obtain 
1

p =
2

1p +  and 
2

2p − = 3 . Solving these two 

equations, we obtain 
1

p = 6  and
2

5p = , which contradict 

that 
1

p  is an odd prime. 

Case II. Suppose = 
1

2 p , then �	�
 =
1 2 1

4 2p p p+ , which 

gives 
2

3( 1)p +  =
1 2
( 1)p p − . From the last equation we get 

1
p =

2
1p + and 

2
1p − = 3 . Solving we obtain 

1
p = 5 and 

2
p

= 4 , which also contradict that 
2

p  is an odd prime. 

Case III. Suppose  =
1 2

p p , then �	�
 = 
1 2 1 2

4 p p p p+ , 

which gives
1 2

3( 1)p p+ + =  
1 2

2 p p . Since the expression 

1 2
1p p+ +

 
is always odd, therefore the last equation has no 

solution for any odd primes 
1

p  and 
2

p . 

Hence the above three cases strictly imply that there is no 

near perfect number of the form � =
1 2

2 p p , where 
1

p  and 

2
p  are distinct odd primes. 

Proposition 2.10. If = 1 22a p p , where � > 1 and 1p  and 2p  

are distinct odd primes, then � is not a near perfect number 

with redundant divisor 1 2p p . 

Proof. If  � = 2�
1 2p p , then 

�	�
 − 2� = �	2�
 
1

1 2 1 2( ) ( ) 2ap p p pσ σ +−  

= 1 1

1 2 1 2(2 1)( 1)( 1) 2a ap p p p+ +− + + −
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= 1

1 2 1 2(2 1)( 1)a p p p p+ − + + −
 

Suppose � is a near perfect number with redundant divisor 

1 2
p p , then 

1

1 2
(2 1)( 1)a

p p
+ − + + = 

1 2
2 p p

.
 

Since the numbers 12 1a + −  and 
1 2

1p p+ +  are odd 

numbers, so L. H. S. of the last equation is an odd number 

and therefore 
1

1 2
(2 1)( 1)

a
p p

+ − + + ≡ 1 (mod 2), but R. H. 

S. is even and divisible by 2. The parity of L. H. S. and R. 

H. S. of the equation do not match, which is a 

contradiction. 

Proposition 2.11. Let 
1

p  and 
2

p  are distinct odd primes 

with 
1

p <
2

p . If � = 2

1 2
2p p  is a near perfect number with 

redundant divisor 2, then � = 650. 

Proof. If � = 2

1 2
2 p p  is a near perfect number with 

redundant divisor 2, then 

2 = �	�
 − 2� = 2

1 1
3( 1)p p+ + 2

2 1 2
(1 ) 4p p p+ −  

2 2

1 1 2 1 2 1 2
3 3 3 3 3p p p p p p p= + + + − +  

After simple simplification we get 
2

1 1 2 1 2
( 1)(2 3 1) ( 1)p p p p p+ + + = − . 

We solve this equation in terms of 
1

p  and 
2

p . 

From the last equation we obtain the following three 

possibilities: 

Case I. If 
1 2

1 1p p+ = − and 
2

1 2 1
2 3 1p p p+ + =  then 

2 1
2p p= +  an d

1 1
( 5) 7p p − = . But the equation

1 1
( 5) 7p p − =  has no solution. 

Case II. If 2

1

1
1

2

p
p

−
+ =  and 

2

1 2 1
2 3 1 2p p p+ + =  then 

2 1
2 3p p= +  and 

2

1 1
4 5 0p p− − = . Solving these two 

equations, we get 
1

5p = , 
2

13p =  and therefore � = 650 . 

Proposition 2.12. If �
1 2

...
m

p p p= , where 
1

p  < 
2

p <  … . <
m

p  are odd primes, then � is not a near perfect number with 

redundant divisor m
p

. 

Proof. Suppose � =
1 2

...
m

p p p  is a near perfect number 

with redundant divisor 
m

p , then �	�
 = 2� +
m

p  and 

therefore
m

p  |�	�
, then 
m

p |
1 2

(1 )(1 )...(1 )
m

p p p+ + + .  

Since 
1

p  < 
2

p <  … . <
m

p , so it is clearly 
1

2

ip + < m
p

 for 

all prime factors 
i

p  of �. Therefore  

m
p ∤

1 2
(1 )(1 )...(1 )

m
p p p+ + + , which is a contradiction. 

Proposition 2.13. If 2� − 3  is an odd prime, then � =
2���	2� − 3
  is a near perfect number with redundant 

divisors 2. 

Proof. We have 

�	�
 − 2� = 	2� − 1
	2� − 3 + 1
 − 2�	2� − 3
 

= 2�	2� − 3
 + 2� − 	2� − 2
 − 2�	2� − 3
 = 2. 

Proposition 2.14. If 2� − 5  is an odd prime, then � =
2���	2� − 5
  is a near perfect number with redundant 

divisors 4. 

Proposition 2.15. Let 
m

F  = 2 1m +  is a Fermat prime. 

For � < � , if 2� −
m

F  is an odd prime, then � =
2���	2� −

m
F 
 is a near perfect number with redundant 

divisor 2m . 

Proof. We have 

�	�
 − 2� = 	2� − 1
 )2� −
m

F  + 1* − 2�	2� −
m

F 
 

= 2�	2� −
m

F 
 + 2+ − )2+ −
m

F + 1* − 2+	2+ −
m

F 
 

2m= . 

Proposition 2.16. If ,  and 
m

F = 2 1m +  are respectively 

perfect number and Fermat prime with g.c.d ),,
m

F * = 1 , 

then � = ,
m

F  is not a near perfect number. 

Proof. We have �	�
 − 2� = 2, ( 1)
m

F + − 2J
m

F = 2J.  
But 2, is not a divisor of �. 

Proposition 2.17. If . = 2� − 1 is a Mersenne prime, then 

� = 2���.!  is 2 near perfect number with redundant 

divisors . and .�. 

Proof. We have 

�	�
 − 2� =  	2� − 1
	.! + .� + . + 1
 − 2�.!  
= .� + .. 

In general we obtain the following proposition 

Proposition 2.18. If . = 2� − 1 is a Mersenne prime, then 

for any � ≥ 2 , � = 2���.���  is a �  near perfect number 

with redundant divisors ./, where 1,2....,i k= . 

Proposition 2.19. For each 0 = 1, 2; if 
i

M  = 2 1ip −  is a 

Mersenne prime, then � = 1 1

1 2
2

p
M M

−
 is not a near perfect 

number. 

Proof. We have �	�
 − 2� = 2

1 1
M M+ .  

But 
2

1
M  is not a divisor of �. 

Proposition 2.20. If � = 1

1 22 ...ip

rM M M
−

, where iM =
2 1ip − are distinct Mersenne primes, 0 = 1,2, … . 2, then � is 

not a near perfect number. 

3. Conclusion 

Near perfect numbers are natural extensions of classical 

perfect numbers. In this paper, we discuss near perfect 

numbers of certain form. There are very good scopes for 

studying other form of near perfect numbers. 
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