3 (Sem-1/CBCS) STA HC 1

2020

(Held in 2021)

STATISTICS

(Honours)

Paper: STA-HC-1016

(Descriptive Statistics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions as directed: 1×7=7
 - (a) It is necessary to find cumulative frequencies in order to draw a/an
 - (i) histogram
 - (ii) frequency polygon
 - (iii) ogive
 - (iv) pie chart

(Choose the correct option)

Contd.

- (b) If the harmonic mean of the two numbers 'a' and 'b' is 5 and if a = 5, then b is _____. (Fill in the blank)
- (c) "Two series A and B have the same standard deviations, but the mean of A is greater than that of B. The coefficient of variation of A is less than that of B".

 (State True or False)
- (d) For consumer price index, price quotations are collected from
 - (i) wholesale dealers
 - (ii) retailers
 - (iii) fair price shops
 - (iv) government depots.

 (Choose the correct option)
- (e) What do you mean by controlled experiment?
- (f) In a regression line of Y on X, the variable X is known as
 - (i) independent variable
 - (ii) regressor
 - (iii) explanatory variable
 - (iv) All of the above.

 (Choose the correct option)

- (g) State the limits for Spearman's rank correlation coefficient.
- 2. Answer the following questions: 2×4=8

ensection encountry and Alba

- (a) State with suitable example, the distinction between an attribute and a variable.
 - (b) Prove that the arithmetic mean of a variable whose given values are all equal, must be the same as their common value.
 - (c) State any two assumptions of Karl Pearson's correlation coefficient.
 - (d) Give the interpretation of Wholesale price index and Cost of living index number.
- 3. Answer any three of the following questions: 5×3=15
 - (a) Differentiate between —

Extra 200 miles to 150 miles

(i) primary data and secondary data

The second of the second of the second of

(ii) questionnaire and schedule.

21/2+21/2=5

- (b) Define absolute moment and factorial moment. If Y=a+bX be a linear function of X; then prove that the arithmetic means of Y and X are related in the same way as Y and X themselves are.

 2+3=5
 - (c) Write a note on different scales of measurement nominal, ordinal, interval and ratio.
 - (d) Explain briefly different types of errors in Index number.
 - (e) Define Skewness and Kurtosis. For discrete distribution, prove that $\beta_2 > 1$, notation having usual meaning.

2+3=5

- 4. Answer either (a) or (b):
 - (a) (i) The sum of 10 items is 12 and sum of their squares is 16.9. What is the value of the standard deviation?
 - (ii) Write a brief note on Sheppard's Correction for moments.

- (iii) The variables X and Y are connected by the equation aX+bY+c=0. Show that the correlation between them is -1 if the signs of 'a' and 'b' are alike and +1 if they are different.
- (b) (i) Why do we calculate in general, only the first four moments about mean of a distribution and not the higher moments?
 - Examine the consistency of the (ii) following data -

N = 1000; (A) = 600; (B) = 500; (AB) = 50, the symbols having their usual meaning.

(iii) If L(p) and P(q) represent respectively Laspeyre's index number for prices and Paasche's index number for quantities, show that

$$\frac{L(p)}{L(q)} = \frac{P(p)}{P(q)}$$

- Answer either (a) or (b): 5.
 - (i) Differentiate between population and sample. 2

(ii) Define raw and central moments of a frequency distribution. Obtain the relationship between the central moments of order r in terms of the raw moments.

1+4=5

- (iii) Briefly describe the term 'deflation' in Index number.
 - (b) (i) Give an idea of scrutiny of data for internal consistency.
- (ii) For a trivariate distribution, explain partial correlation coefficient with example. 2
 - (iii) What do you mean by method of least squares? Derive the equation of the line of regression of Y on X.

 1+5=6

6. Answer either (a) or (b):

(a) (i) Define standard deviation. If n_1, n_2 are the sizes, $\overline{x}_1, \overline{x}_2$, the means and σ_1, σ_2 , the standard deviations of two series respectively, then find the standard deviation σ of the combined series of size $n_1 + n_2$.

1+6=7

6

- (ii) Write a note on Index of industrial production.
- (b) (i) Write a note on choice of weights in construction of index number.
 - (ii) Define Multiple correlation coefficient with usual notations, prove that

$$R_{1\cdot 23}^{2} = \frac{r_{12}^{2} + r_{13}^{2} - 2r_{12}r_{13}r_{23}}{1 - r_{23}^{2}} \qquad 1 + 6 = 7$$

7