3 (Sem-6) MAT M 4

2022

MATHEMATICS

(Major)

Paper: 6.4

(Discrete Mathematics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1\times7=7$
 - (a) Write the fundamental theorem of arithmetic.
 - (b) If the positive integers a and b are relatively prime, then
 - with a(i) = [a, b] = 1, we have a(i) = a(i)
 - (ii) a | b
 - (iii) (a, b) = 1
 - (iv) None of the above (Choose the correct option)

(c) If a and b are two positive integers such that (a', b) = 1, then

(i)
$$[a, b] = 1$$

(ii)
$$[a, b] = ab$$

(iii)
$$(a, b)[a, b] = 1$$

- (iv) None of the above (Choose the correct option)
- (d) State Wilson's theorem on congruence.
- (e) State Fermat's last theorem.
- (f) If d = (a, b), $d \mid c$ and ax + by = c has a particular solution x_0 and y_0 , then write the other solution of the equation.
- (g) Express 113 as a sum of two squares.
- 2. Answer the following questions: $2\times4=8$
 - (a) If $a \mid bc$ and (a, b) = 1, then show that $a \mid c$.
 - (b) What is the remainder when 5⁴⁸ is divided by 12?

- (c) Solve the linear congruence equation $6x \equiv 15 \pmod{21}$
- (d) Prove that the equation $x^4 + y^4 = z^4$ has no positive solution.
- Answer the following questions: 5×3=15 3.
 - (a) Prove that there is infinite number of primes of the form 4k+3.

Or

Find the greatest common divisor g of the numbers 1819 and 3587 and find the integers x and y to satisfy 1819x + 3587y = g.

Find the solution of the system of congruences

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$
$$x \equiv 2 \pmod{7}$$

(c) Prove that the equation $x^2 + y^2 = z^2$ has a primitive solution if and only if there exists $s, t \in \mathbb{N}, s > t, (s, t) = 1$ and one even and the other odd such that

$$x = x^{2} - t^{2}$$

$$y = 2st$$

$$z = s^{2} + t^{2}$$

The green and the

Or

Examine whether the following Diophantine equation has solution. If it is solvable, find the solution:

$$172x + 20y = 1000$$

- 4. Answer either (a) or (b):
 - (a) For each positive integer $n \ge 1$, prove that

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d} = n \prod_{p} \left(1 - \frac{1}{p} \right)$$

The symbols have their usual meanings.

1

(b) If $n = p_1^{s_1} p_2^{s_2} ... p_r^{s_r}$, p_i , distinct primes and integers $s_i \ge 1$, then for each $r \ge 1$, prove that

$$\tau(n) = (s_1 + 1)(s_2 + 1)...(s_r + 1)$$

- Answer either (a) or (b): 5. 10
 - (a) Prove that every Boolean function which does not contain any constant is equivalent to function in disjunctive normal form (DNF).
 - (b) (i) Find the conjunctive normal form (CNF) for the function

$$f = x_1 x_2 x_3 + x_1 x_2' x_3 + x_1' x_2' x_3 + x_1' x_2' x_3'$$

(ii) Design a circuit connecting two switches and one bulb in such a way that either switch may be used to control the light independent of the order.

5+5=10

- (a) is a statement form which contains another statement form \mathcal{O}_1 . Further suppose B is obtained from W by substituting \mathcal{B}_1 for one or more occurrences \mathcal{A}_1 , then show that $(\mathscr{A}_1 \leftrightarrow \mathscr{B}_1) \rightarrow (\mathscr{A} \leftrightarrow \mathscr{B})$ is a tautology. Hence if \mathscr{A}_1 and \mathscr{B}_1 are logically equivalent, then show that and B are logically equivalent. 10
- (b) (i) Find the statement form in the connectives ~, ^ and v that generates the function f, where

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
T	T	T	T
T	F	T	T
T	T	F	T
T	F	F	F
\boldsymbol{F}	T	T	· F
F	F	T	F
F	T	F	F
F	F	F	T

3 (Sem-b) WAT M 4/G

- Light

(ii) Show that the statement form $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ is a tautology. 5