3 (Sem-6) MAT M5

2022

MATHEMATICS

(Major) A A (M

Paper: 6.5 2 A 1/11

(Graph and Combinatorics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions: 1×7=7

A Can we did the are and I verifies with

av In a con-trivial tree with p vertices and

(a) A bookshelf holds 6 different English books, 8 different French books and 10 different German books. In how many ways a book (of any one language) can be drawn from the bookshelf?

Gartes p.

- (b) Let X be a set and let A, B be any subsets of X. If $A \subset B$, then which of the following statements is false?
 - (i) $A \cap B' = \phi$
 - (ii) $A \cap B = A$
 - (iii) $A \cup B = B$
 - (iv) $A^c \subset B^c$
- (c) There are 15 married couples in a party. Find the number of ways of choosing a woman and a man from the party such that the two are not married to each other.
- (d) Can we draw a graph of 7 vertices such that the degree of each vertex is 3? If not, why?
- (e) Draw the graph $\overline{K}_3 + \overline{K}_4$.
- (f) Define cut point of a graph G.
- (g) In a non-trivial tree with p vertices and q edges, p = ?

- 2. Answer the following questions: 2×4=8
 - (a) If X is any set and A is any subset of er sale it, then show that

$$|X-A|=|X|-|A|$$

And There are a reported the State

Toriff or experience round believe!"

- (b) Define enumerable set with suitable example.
- (c) Can a graph containing a cycle of length 3 be a bipartite graph? Justify.
 - (d) Find the number of points and number of lines in —

that the substitution of the contract of the contract of

- (i) $K_5 + K_1$;
- $K_{m,n}$. The second of $K_{m,n}$
- 3. Answer any three parts: 5×3=15

Let G be a (a, m couple, all of where

(a) Give a combinatorial proof of C(n, r) = C(n-1, r) + C(n-1, r-1)2-1 DU-THE ARESO 5

- (b) (i) Ten different paintings are to be allocated to n office rooms so that no room gets more than 1 painting. Find the number of ways of accomplishing this if n = 14.
- There are n married couples at a (ii) party. Each people shakes hands with every person other than her or his spouse. Find the total number of handshakes. 2+3
 - (c) Define intersection graph. Show that every graph is an intersection graph.

1+4

1+4

Define degree of a vertex of a graph. (d)Let G be a (p, q) graph, all of whose vertices have degree K or K+1. If Ghas $p_K > 0$ vertices of degree K and p_{K+1} vertices of degree K+1, then prove that $p_K = (K+1)p - 2q$

- (e) Show that every non-trivial tree has at least two end vertices (i.e., vertices with deg 1). 5
- 4. (a) For prescribed non-negative integers $\lambda_1, \lambda_2, ..., \lambda_m$, find the number of solutions in integers of the equation $x_1 + x_2 + ... + x_m = n$ with $x_i \ge \lambda_i$ for each i. not be properly at 4

As I so you have not the miles

- (b) Find the number of ways of choosing rpositive integers from among the first n positive integers such that no 2 consecutive integers appear in the choice and the choice does not include 1 and n. 6
- (a) (i) For any graph G, show that 5. $\kappa(G) \le \lambda(G) \le \delta(G)$

to The set of edges of thought to partituited

where the symbols have their usual meaning. 7

Draw a graph for which $\kappa = 2$, $\lambda = 3$ in end (ii) Here are and $\delta = 4$. 3

Or

- (i) For all integers a, b; c such that (b) $0 < a \le b \le c$, show that there exists a graph with $\kappa(G) = a$, $\lambda(G) = b$ and multiply of $\delta(G) = c$. The in-
- (ii) Define connectivity function of a graph G. Show that this function is strictly decreasing function. 4
- 6. Prove the equivalence of the following 10 statements: n resting michers such action

a general in the event to minimum and the ?

(a) G is Eulerian

10

0

- Every vertex of G has even degree (b)
- The set of edges of G can be partitioned (c) into cycles test works at done yet the to the E

Or

If for all vertices v of a graph G(p, q), (a) deg $v \ge p/2$, where $p \ge 3$, then show that G is Hamiltonian.

- (b) Give an example of a graph which is both Eulerian and Hamiltonian. 2
- (c) How many Hamiltonian cycles are there in K_4 ?