2022

Mathematics (Honours)

Paper: MAT-HC-1026

(Algebra)

Time: 3 hours

Full Marks: 80

The figures in the margin indicate full marks for the questions.

1. Answer the following questions:

 $1 \times 10 = 10$

(a) Write the negation of the statement:

 $\forall a \in R(\exists x \in A(x \ge a))$

- (b) Let $A = \{(x, y) \in R^2 : x + y = 0\}$ and $B = \{(x, y) \in R^2 : xy = 1\}$. Find $A \cap B$.
- (c) Write true or false:

The circle $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is a graph of any function.

- (d) For $z_1, z_2 \in C$, is the number $z_1\overline{z}_2 + \overline{z}_1z_2$ a real number?
- (e) For what values of h and k, the following system is consistent?

$$2x_1 - x_2 = h$$

$$-6x_1 + 3x_2 = k$$

(f) Write true or false:

An inconsistent system has more than one solution.

(g) Is the function $f: Z \to Z$ defined by f(x) = 2x + 5 one-one?

Contd.

(h) Write true or false:

If a set $S = \{x_1, x_2, x_3, \dots, x_p\}$ in R^n contains a zero vector, then the set is linearly independent.

(i) If
$$A = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$, then find $\det(A - B)$.

- (j) Find the polar coordinates of the point $(\sqrt{3},1)$.
- 2. Answer the following questions:

 $2 \times 5 = 10$

- (a) Find the polar representation of the complex number $z = 1 + \cos \alpha + i \sin \alpha$, $\alpha \in (0, 2\pi)$
- (b) If n divides k then show that any root of $z^n 1 = 0$ is a root of $z^k 1 = 0$.
- (c) Prove that for an integer n, if $n^3 1 = 0$ is even, then n is odd using contrapositive implication.
- (d) Show that the vectors $v_1 = (2,2,-3)$, $v_2 = (0,-4,1)$, $v_3 = (3,1,-4)$ are linearly dependent.
- (e) Find the geometric image of the complex number z in |z-1|=3.
- 3. Answer *any four* questions of the following: 5×4=20

(a) If
$$z + \frac{1}{z} = \sqrt{3}$$
 then find the value of $z^n + \frac{1}{z^n}$.

(b) Prove that there are infinitely many prime numbers. 5

- (c) Show that a linear transformation $T: V \to V$ on a vector space V is one-to-one if and only if T is onto.
- (d) Let $f: X \to Y$ be a mapping and $B_1, B_2 \subset Y$. Prove that $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$ 5
- (e) (a) Examine if the following system of equation is consistent or not.

$$x_1 + 3x_3 = 2$$

$$x_2 - 3x_4 = 3$$

$$-2x_2 + 3x_3 + 2x_4 = 1$$

$$3x_1 + 7x_4 = -5$$

(f) Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ if it exists by

performing suitable row operations on the augmented matrix [A:I].

- 4. Answer any four questions of the following: 10×4=40
 - (a) (i) Prove that De Moivre's theorem holds for negative integer exponents.
 - (ii) Let p be a prime number and let $\varepsilon = \cos \frac{2\pi}{p} + i \sin \frac{2\pi}{p}$, show that if a_0, a_1, \dots, a_{p-1} are non zero integers, the relation

$$a_0 + a_1 \varepsilon + \dots + a_{p-1} \varepsilon^{p-1} = 0$$
 holds if and only if $a_0 = a_1 = \dots = a_{p-1}$.

- (iii) Show that every integer greater than 1 has a prime divisor. 4
- (b) (i) If $T: X \to Y$ is a bijection function then prove that $f^{-1}of = I_X$ and $fof^{-1} = I_Y$, where I_X and I_Y are identity functions on X and Y respectively.
 - (ii) If $f: X \to Y$ and $g: Y \to Z$ are bijection functions, then show that $g \circ f$ is a bijection function and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- (c) Define equivalence relation on a non-empty set X. Show that the relation congruence modulo n, where $n \neq 0$, is any fixed integer on the set Z of integers, defined by

$$a \equiv b \pmod{n} iff \, n \mid a - b$$

is an equivalence relation. Find all the distinct equivalence classes of Z if n=4, so that Z is the union of these. 1+4+5=10

- (d) Define well-ordering principle. Prove that if $a,b \in Z$ with $a \in N$, then there exists unique integers q and r such that-
 - (i) b = aq + r,

(ii)
$$0 \le r < a$$
. $2+8=10$

(e) (i) Let $T: U \to V$ be a linear transformation. Show that $KerT = \{0\}$ if and only if T is one-one

- (ii) Consider the mapping $T: \mathbb{R}^3 \to \mathbb{R}$ such that $T(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$. Examine the linearity of T. 3
- (iii) If $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(x, y, z) = (2x 3y + 4z, 5x y + 2z, 4x + 7y).

Find the matrix of T with respect to the usual basis of R^3 . 4

- (f) (i) Let $X = N \times N$, where N is the set of positive integers. Define a relation \sim on X as $(a,b) \sim (c,d)$ if and only if a+d=b+c. Show that \sim is an equivalence relation on X.
 - (ii) Reduce matrix A to echelon form by row reduce method and locate the pivot columns of A, where

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$